Para explicar la definición anterior, entiéndase a un Agente inteligente que permite pensar, evaluar y actuar conforme a ciertos principios de optimidad y consistencia , para satisfacer algún objetivo o finalidad. De acuerdo al concepto previo, racionalidad es más general y por ello más adecuado que inteligencia para definir la naturaleza del objetivo de esta disciplina.
Características de la Inteligencia Artificial.
1. Una característica fundamental que distingue a los métodos de Inteligencia Artificial de los métodos numéricos es el uso de símbolos no matemáticos, aunque no es suficiente para distinguirlo completamente. Otros tipos de programas como los compiladores y sistemas de bases de datos, también procesan símbolos y no se considera que usen técnicas de Inteligencia Artificial.
2. El comportamiento de los programas no es descrito explícitamente por el algoritmo. La secuencia de pasos seguidos por el programa es influenciado por el problema particular presente. El programa especifica cómo encontrar la secuencia de pasos necesarios para resolver un problema dado (programa declarativo). En contraste con los programas que no son de Inteligencia Artificial, que siguen un algoritmo definido, que especifica, explícitamente, cómo encontrar las variables de salida para cualquier variable dada de entrada (programa de procedimiento).
Las conclusiones de un programa declarativo no son fijas y son determinadas parcialmente por las conclusiones intermedias alcanzadas durante las consideraciones al problema específico. Los lenguajes orientados al objeto comparten esta propiedad y se han caracterizado por su afinidad con la Inteligencia Artificial.
3. El razonamiento basado en el conocimiento, implica que estos programas incorporan factores y relaciones del mundo real y del ámbito del conocimiento en que ellos operan. Al contrario de los programas para propósito específico, como los de contabilidad y cálculos científicos; los programas de Inteligencia Artificial pueden distinguir entre el programa de razonamiento o motor de inferencia y base de conocimientos dándole la capacidad de explicar discrepancias entre ellas.
4. Aplicabilidad a datos y problemas mal estructurados, sin las técnicas de Inteligencia Artificial los programas no pueden trabajar con este tipo de problemas. Un ejemplo es la resolución de conflictos en tareas orientadas a metas como en planificación, o el diagnóstico de tareas en un sistema del mundo real: con poca información, con una solución cercana y no necesariamente exacta.
La Inteligencia Artificial incluye varios campos de desarrollo tales como: la robótica, usada principalmente en el campo industrial; comprensión de lenguajes y traducción; visión en máquinas que distinguen formas y que se usan en líneas de ensamblaje; reconocimiento de palabras y aprendizaje de máquinas; sistemas computacionales expertos.
No hay comentarios:
Publicar un comentario